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Lecture 36

ADC Design

• Flash Architecture

• Pipelined Architecture



Analog to Digital Converters

The conversion from analog to digital in most ADCs is 

done with comparators

ADC design is primarily involved with designing 

comparators and embedding these into circuits that 

are robust to nonideal effects
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XOUT

Review from Last Lecture
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Review from Last Lecture



Over-Sampled

Quantizer  Levels

Effective Decimated 

Quantizer  Levels

Sampling Clock

Effective Sampling Clock

Over-sampling ratios of 128:1 or 64:1 are common

Dramatic reduction in quantization noise effects

Limited to relatively low frequencies

Review from Last Lecture



ADC Types

• Flash

• Pipeline

• Two-Step Flash

• Multi-Step Flash

• Cyclic (algorithmic)

• Successive Approximation

• Folded

• Dual Slope

• Single-bit

• Multi-bit

• First-order

• Higher-order

• Continuous-time 

Nyquist Rate Over-Sampled

Review from Last Lecture



String 168

R-2R 79

Current Source 52

MDAC 23

Current Sink 17

SAR 9

Pipeline 7

Delta Sigma 4

1-Steering 3

Current Steering 2

What Architectures are Actually Used

DACs

Texas Instruments Mar 1, 2023

ADCs

Texas Instruments April 13  2023

SAR 728

Pipeline 294

Delta Sigma 187

Folding Interpolating 66

Delta Sigma 

Modulator 9

Two-Step 6

Flash 3

Total 1293

• These are catalog parts

• Specific details about architecture usually absent in data sheets

• Some (many) in list are slight variants and carry different part numbers

• Variety of converters used in ASIC applications will be larger

Review from Last Lecture



ADC Types

• Flash

• Pipeline

• Two-Step Flash

• Multi-Step Flash

• Cyclic (algorithmic)

• Interpolating

• Successive Approximation

• Folded

• Dual Slope

• Single-bit

• Multi-bit

• First-order

• Higher-order

• Continuous-time 

Nyquist Rate Over-Sampled

All have comparable 

conversion rates

Basic approach in all is very 

similar

Review from Last Lecture



Flash ADC
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Review from Last Lecture



SAR ADC 

• DAC Controller may be simply U/D counter

• Binary search controlled by Finite State Machine is faster

• SAR ADC will have no missing codes if DAC is monotone

• Not very fast but can be small

VIN

DAC
n

CLK

DAC 

Controller

VREF

Review from Last Lecture



Flash ADC

2
n 
: n

Encoder

n

R

R

R
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dk

CL

Asynchronous operation (benefit or liability?)

Vulnerable to missing codes 

High number of comparators needed (for large n)

R-string area requires considerable area and source of INL limitations 

Offset voltage of comparators of concern

Simultaneous switching of large number of comparators can cause supply glitches

Large parasitic capacitance on VIN pin

Bubbles in output can occur

Metastability an issue

Power dissipation can be large



Flash ADC with Front-End S/H

S/H ADC
FlashXIN

n

XOUT

CLK

Prevents input to ADC from changing during sampling (Synchronous instead of 

Asynchronous)

Performance of ADC can be no better than that of the S/H

Significant amount of effort and power may go into the S/H



Comparators

Clocked Comparator

High-Gain  Saturating Amplifier

Linear High-gain Amplifier

Regenerative Feedback Amplifier

CLK



Clocked Comparator

VIN

Φ2

Φ2

VDD

VDACk

Φ1
Φ1

dk

Regenerative Comparators

Differential

Single-Ended

Regenerative Feedback

Large offset voltage (100mV or more)

Previous-decision affects offset



Clocked Comparator

Forcing VOUT=VIN (by closing switch φ) forces the 

amplifier to operate at the trip point

Concept applicable irrespective of how large the gain of 

the amplifier is

But power dissipation may be high when φ is activated

VOUT

VIN

VTRIP

1

1

VIN VOUT

φ 

Recall:
(Single-ended input)

How can this property be exploited to form clocked comparator?



Clocked Comparator

VOUT
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Low Gain Comparator High Gain Comparator

VOUT

VIN

VTRIP

1

1

High Gain Comparator with 

hysteresis (regenerative) 

(Single-ended input)

If goal is to compare VIN with VTRIP, have clocked comparator

But comparison point highly process dependent thus limiting 

this approach 



Clocked Comparator

VDACk

Φ1

Φ1

Φ2A

C1

VIN

VOUT

Amplifier may be viewed as a preamplifier with offset compensation

• Ideally removes all offset effects

• May not have a large enough gain

• Regenerative latch often used (either for gain block or following)

(Single-ended input)

Comparison now with VDACk



Clocked Comparator

VDACk

Φ1

Φ1

Φ2A

C1

VIN

VOUT

Preamplifier with offset compensation and regenerative latch

VDACk

Φ1

Φ1

Φ2A

C1

VIN

VOUT

Gain of preamplifier may still not be large enough

(Single-ended input)

Can use two pre-amp stages and/or offset compensation on latch



Clocked Comparator with Regenerative Feedback

Regenerative Comparators

Differential

Single-EndedRegenerative Feedback

VIN

Φ2

Φ2

VDD

VDACk

Φ1
Φ1

dk

Φ2

Mx

• Mx used to reduce (eliminate) previous code dependence on comparator decision

• Regenerative feedback often used to force decision when differential inputs are small 

• Several variants of clocked comparators are available

• Important to not have trip point dependent upon previous comparison results

• Often one or more linear gain stages precede the regenerative stage

• Power dissipation can be small in regenerative feedback comparators 

• Large offset voltage (100mV or more) common for regenerative feedback comparators



Clocked Comparator with Regenerative Feedback
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VREF denotes VDACk in these figures



Flash ADC Summary

Flash ADC

Very fast

Simple structure

Usually Clocked

Bubble Removal Important

Seldom over 6 or 7 bits of resolution

• Flash ADC has some really desirable properties (simple and fast)

• Wouldn’t it be nice if we could derive most of the benefits of the FLASH  

ADC without the major limitations

Number of comparators increases geometrically --- 2n

To be practical at higher resolution, must address the major limitation of the FLASH ADC

Major Limitation of FLASH ADC at higher resolutions?



Two-Step Flash ADC 

S/H ADC1

Flash
DAC

+

ADC2

Flash

n1 n2

n

Digital

Assembler

XOUT

MSB LSB

XIN

CLK1

CLK1 CLK2

Can operate asynchronously (either after first S/H or even w/o S/H)

Reduces the number of comparators significantly

Reduces complexity of thermometer to binary converter

Residue signal at input to second Flash ADC is small

Difference block is a linear module that must be accurate

Have added a DAC that must have accuracy at the overall ADC

resolution level

Speed of difference amplifier and DAC limit speed of ADC

Sequential clocking of ADC1 and ADC2 limits speed of ADC



Two-Step Flash ADC with 

Interstage Gain

S/H ADC1

Flash
DAC

+

ADC2

Flash

n1 n2

n

Digital

Assembler

XOUT

MSB LSB

XIN

CLK1

CLK1 CLK2

A

Increases level of signals into second Flash ADC 

(reducing offset concerns by a factor of A)

Speed of A of concern

Considerable power dissipation in A amplifier

Complexity is increasing significantly !



Three-Step Flash ADC with Interstage Gain and S/H

S/H0 ADC1
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CLK4

• Further reduces number of comparators needed!

• Even more complexity!

• But appears first two stages perform identical operations (if n1=n2)

• S/H1 frees first stage to take another sample during second stage 

conversion

• S/H2 frees second stage to take another sample during third stage 

conversion

• This has a pipelining capability !



Three-Step Flash ADC with Interstage Gain and S/H

S/H0 ADC1

Flash
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Same structure, different grouping!



Three-Step Flash ADC with Interstage Gain
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Pipelined ADC

Stage 1

<b1>

n1

r1 Stage 2

<b2>

n2

r2 Stage k

<bk>

nk

rk Stage m

<bm>

nm

rm

XOUT=<n1:n2:…:nm>

XIN
S/H



Pipelined ADC

Stage 1
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Pipelined ADC Stage k
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Pipeline Stage



Pipelined ADC Stage k

D
A

C
k

A
D

C
k

Ak

dk

nk
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+

VREF

Pipeline Stage

Usually Realized as 

Single SC Block



Pipelined ADC Stage k
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Pipeline Stage

Usually Realized as Flash ADC 
(often simple comparator if nk=1)



Pipelined ADC Stage k
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Pipeline Stage for 1 bit/stage
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Transfer Characteristics for 1 bit/stage
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Consider the following circuit

C1

C2Φ1

Φ1

Φ1

Φ2

VIN
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VX

Φ2 V
+

T
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Consider the following circuit
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Consider the following circuit

C1

C2

During   Φ1

VIN

VOUT

V
+

Φ2
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+

=
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VVCQ
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IN22

IN11



Consider the following circuit
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Consider the following circuit
( )
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( ) ( ) ( )XIN1X1IN11T VVCVVCVVCQ == ++

( ) ( ) ( ) X12IN21XIN1IN21T22F VCVCVCCVVCVVCQQQ +=+=+= ++

Define Q1T to be the charge transferred from C1 during phase Φ2

Define Q2F to be the total charge on C2 during phase Φ2



Consider the following circuit
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Consider the following circuit
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If C1=C2=C and 



Consider the following circuit
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Likewise



Observe
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1-bit/Stage Pipeline Implementation
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1-bit/Stage Pipeline Implementation 
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Pipelined ADC Stage k
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Pipeline Stage

Have implementation 

with Single SC Block
Have implementation 

with simple comparator

• Have  shown simple implementation with 1-bit/stage structure

• Implementations with 2-bits/stage or 3-bits/stage also straightforward



Typical SC Pipeline Stage
ADCk
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+
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Ak S/Hk

CLK2

XINk
XOUTk

Digital Assembler

1a 1b 1c 1a 1b 1c

OUT IN d1 d2 d3 REF

2 2 2 2

C + C + C C C C
V =V 1+ - d d d V

C C C C

        
+ +        

        

For 2 bits/stage (Digital Assembler not shown)
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• Directly use thermometer code outputs

• Can be extended to more bits/stage

• Accurate gain possible with good layout



Pipelined ADC

Stage 1

<b1>

n1

r1 Stage 2

<b2>

n2

r2 Stage k

<bk>

nk

rk Stage m

<bm>

nm

rm

XOUT=<n1:n2:…:nm>

XIN
S/H

• Pipelined structure is widely used

• More than one bit/stage is often used

• Optimal number of bits/stage still an area of debate

• Conceptually can simply design one stage and then copy/paste to increase 

resolution

• Accuracy (and correspondingly power) in latter stages can be dramatically 

reduced

• Most power consumed in op amps

• Power dominantly allocated to S/H and MSB stages



Stay Safe and Stay Healthy !



End of Lecture 36


